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Abstract. The explosive volume growth of deep-learning (DL) applications has triggered an era in computing,
with neuromorphic photonic platforms promising to merge ultra-high speed and energy efficiency credentials
with the brain-inspired computing primitives. The transfer of deep neural networks (DNNs) onto silicon photonic
(SiPho) architectures requires, however, an analog computing engine that can perform tiled matrix multi-
plication (TMM) at line rate to support DL applications with a large number of trainable parameters, similar to
the approach followed by state-of-the-art electronic graphics processing units. Herein, we demonstrate an
analog SiPho computing engine that relies on a coherent architecture and can perform optical TMM at the
record-high speed of 50 GHz. Its potential to support DL applications, where the number of trainable
parameters exceeds the available hardware dimensions, is highlighted through a photonic DNN that can
reliably detect distributed denial-of-service attacks within a data center with a Cohen’s kappa score-based
accuracy of 0.636.
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1 Introduction
During the last decade, deep neural networks (DNNs) have
become increasingly important for the resolution of numerous
practical problems.1 With the amount of computing power
required to train such DNNs doubling every 3.5 months,2

academic and industrial researchers started gravitating toward
new technologies and hardware accelerators to keep pace with
this growth. Highly parallelized computing solutions, including
graphic processing units (GPUs),3 field programmable gate
arrays,4 tensor processing units (TPUs),5 and application-
specific integrated circuits,6–8 have been developed to accelerate

the matrix-vector multiplication (MVM) operations, which
form the most time- and power-consuming computational task
in DNNs.9

Yet, as transistor scaling is stagnating,10 a high number of
alternative emerging technologies have been investigated toward
boosting energy efficiency and performance scaling, e.g.,
optoelectronic memristors,11–15 nanophotonics,16,17 and spin-
tronics,18,19 with brain-inspired photonic accelerators forming
one of the key candidate platforms for future AI computing en-
gines due to their inherent credentials to support time-of-flight
latencies and terahertz bandwidths.20,21 Remarkable progress has
been witnessed during the last five years in the field of neuro-
morphic photonics across all necessary constituent technology
blocks, including MVM photonic architectures,17,22–28 individual*Address all correspondence to George Giamougiannis, giamouge@csd.auth.gr
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photonic computational elements,29–32 nonlinear activations,33–36

and photonic hardware-aware training models.37,38 All these
demonstrations have highlighted the potential for energy-
efficient and high-speed DNNs by utilizing low-speed weight
encoding technologies and a rather small amount of neurons,
validating their credentials to support inference within small
scale neural network (NN) topologies that can fit in a practical
silicon photonic (SiPho) chip.

However, typical NN layouts used for benchmarking pur-
poses, such as ResNet152 and AlexNet,39 require a total number
of 25 and 62 million trainable parameters, respectively, that can
hardly fit as hardware-coded information even into the available
number of computational elements supported by current top-
class GPU and TPU platforms. This has turned tiled matrix
multiplication (TMM) into the mainstream processing paradigm
in today’s AI engines,40,41 where both the input and the weight-
ing values have to be updated at line rate through time division
multiplexing (TDM) approaches until all matrix tiles are proc-
essed. To this end, the upgrade of neuromorphic photonics into a
versatile AI processing platform has to proceed along the para-
digm of today’s TPU and GPU computational engines, where
a limited amount of hardware resources can execute DNNs
with significantly higher dimensions. This would necessitate,
however, the use of photonic architectures and technologies
that can support dynamic reconfiguration of both the NN input
and weight parameters, with the existing demonstrations being
incapable of meeting these requirements, as they mostly rely on
low-speed weight encoding technology, such as thermooptic
(TO) devices17,26 and phase change materials.22

In this paper, we present a compact SiPho computing engine
that supports both input and weight update rates at a record-high
50 GHz clock frequency, reporting for the first time, to the best
of our knowledge, on high-speed TMM directly in the optical
domain that allows for DNN implementations over limited-scale
photonic hardware. The photonic accelerator comprises a two-
input coherent linear neuron (COLN) layout with high-speed
SiGe electro-absorption modulators (EAMs) used both for
input and weight imprinting. We experimentally demonstrate its
credentials to implement TMM and support DNNs with higher
dimensions through its deployment in data center (DC) traffic
inspection for network security applications, employing the
photonic engine for the identification of distributed denial-of-
service (DDoS) attack patterns via the classification of recon-
naissance attacks (RAs). The DNN comprises 10 neurons and
64 trainable parameters and was successfully executed via the
COLN, revealing high experimental accuracy values with a
Cohen’s kappa score (κ-score)42 of 0.638 at 50 GHz. Finally, the
scaling perspectives of the EAM-based two-input COLN into
a higher dimension N × N coherent photonic crossbar (Xbar)
are presented, providing the practical framework for the deploy-
ment of optical TMM operations in a layer–scale layout and
for higher-dimension tiles.

2 Neuromorphic Processor for Tiled Matrix
Multiplication

The TMM concept is illustrated in Figs. 1(a)–1(c), showing
an example where three different steps are required for calculat-
ing the products between two rows of a 6 × 6 matrix and a
six-element input vector, when 2 × 2 matrix tiles are used. The
2 × 2 matrix tile starts from the top-left position of the matrix
and gets multiplied with the first two input vector values, with

the respective products being stored at the first two entries of the
six-element output vector, as shown in Fig. 1(a). Then, the 2 × 2
matrix tile shifts to the right and the two-element input vector
tile shifts down [Fig. 1(b)] to incorporate the next entries of the
first two matrix rows and the input vector, respectively, produc-
ing in this way two new partial weighted input sums through the
multiplication of the tile with the corresponding values of the
input vector. This process continues with the 2 × 2 tile shifting
to the right until the whole horizontal dimension of the 6 × 6
matrix has been scanned, as illustrated in Fig. 1(c).

The realization of TMM in the optical domain can be accom-
plished through a photonic MVM engine where inputs and
weights can be updated at line rate, supported by an electronic
circuitry for storing the matrix values, loading the necessary
tiles to the photonic MVM and storing the partial output sums.
This visionary architecture is pictorially represented by Fig. 1(d),
showcasing all key building blocks of a neuromorphic photonic
processor. The MVM linear operations are executed via the
photonic MVM processor in the analog domain, utilizing an in-
tegrated or external laser source for “lighting up” the processor.
The input and weight values are stored at an electronic memory
unit and are loaded onto the photonic MVM processor using
digital-to-analog converters. The photonic MVM output is con-
nected to an array of photodiodes that transforms the computed
signals back to the electronic domain, exploiting an analog-to-
digital converter array for the digitization of the data so that they
can be stored at the electronic memory. Additionally, an elec-
tronic control circuit is needed for data flow synchronization,
orchestration, and communication between the memory block
and the photonic MVM unit.

Yet, with the NN depth and size increasing with problem
complexity, the total number of the NN-trainable parameters
will reach values well beyond the matrix dimensions supported
by the photonic MVM engine, implying that the photonic MVM
hardware has to be shared among a larger number of parameters
through inter/intralayer or intraneuron TDM techniques (see
Supplementary Material). The implementation of the above
requires either the continuous update of the emerging partial
sums for the calculation of the multiplication of a whole input
vector with a weight matrix tile, as shown in Figs. 1(a)–1(c), or
by storing all partial sums at different registers and then forcing
them again for further addition via the photonic MVM engine.

A pictorial example of the intraneuron TDM approach for
TMM can be visualized in Fig. 1(e), illustrating how an elemen-
tary 2:1 neuron can carry out the linear summations of a five-
axon neuron. This corresponds to the dot product between a
1 × 5 row vector that contains the weights of the neuron and
a 5 × 1 column vector that includes the input values, executed
through the use of 1 × 2 and 2 × 1 row and column vector tiles,
respectively. The five-input neuron is unrolled into four 2:1
virtual neurons whose linear summation operations can be per-
formed within three phases. More specifically, during the first
phase, the 2:1 hardware is utilized in three time slots, calculating
the linear summations

P
2
i¼1 xiwi,

P
4
i¼3 xiwi, and

P
6
i¼5 xiwi,

with x6 and w6 being zero and one padded input and weight
values, respectively. Afterwards, these three partial weighted
input sums

P
need to be summed in order to provide the

required weighted summation of the five inputs of the neuron.
Considering that the addition of the partial sums is carried
out again in the optical domain, the summation operation can
be performed on-chip by applying weight values equal to 1.
Because the hardware can imprint two input values at a time
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slot, the remaining summations would be performed in two
more phases, as depicted in Fig. 1(e). It can be derived that
a photonic neuron of Naxons number of axons is capable of cal-
culating the linear operations of a layer that comprises neurons

of Ninputs number of inputs each, in Nphases ¼ logNaxons
ðNinputsÞ

phases.
The execution of the MVM product required for an entire

neural layer via the same 2:1 NN hardware requires both

Fig. 1 (a)–(c) The process of tiled matrix multiplication. (d) Electro-optic blocks cointegration for
the development of a neuromorphic photonic processor with tiled matrix multiplication capabilities.
(e) 2:1 hardware implementing a 5:1 neuron in three phases. (f) The tiled MVM process for
a 3 × 5 weight matrix with 5 × 1 input vectors via 2:1 hardware. (g) The TDM scheme followed
during the tiled MVM process of (f).
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intraneuron and intralayer TDM, with intraneuron and intralayer
TDM corresponding to the use of multiple tiles across a single
matrix row and a matrix column, respectively. Assuming, for
example, a fully connected layer with Nneurons number of neu-
rons and Ninputs∕neuron number of inputs per neuron, Fig. 1(f)
illustrates the MVM between a weight matrix with dimensions
Nneurons × Ninputs∕neuron and an input vector with dimensions
Ninputs∕neuron × 1 × Nsamples, with Nsamples being equal to the
inference batch size b. The 2:1 NN hardware encodes two
elements of the weight matrix and two elements of the input
vectors at a time slot, highlighted in the colored red, green, and
yellow rectangles. This is depicted in more detail in Fig. 1(g),
where the NN hardware hosts the weight values of the rectangle
A in its weighting modules wa and wb, along with the input
values x1,1 and x2,1, in the respective input modules xa and xb
during the first time slot. Both input and weight values will be
updated during the second time slot, with the weight values
of the matrix tile B being loaded onto the weighting modules
wa and wb and the input values x3,1 and x4,1 onto the respective
input xa and xb stages. This process continues until all partial
weighted input sums of the entire matrix and the first-sample
input vector are calculated, i.e., until the last matrix row that
comprises matrix tiles G, H, and I gets also multiplied with
the input vector from the first sample, completing in this way
phase #1 of the process. Subsequently, the partial sums will be
sequentially employed at the input modules xa and xb for their
addition until they form the complete weighted input sum that
corresponds to the product between a matrix row and the input
vector of the first sample. This process is completed within the
subsequent phases #2 and #3 of Fig. 1(g), utilizing weighting
values equal to one. After completing phase #3 of the first
sample, the multiplication of the weight matrix with the input

vector in the second sample is initiated, following again the
same TMM scheme and repeating all three phases. The MVM
operation will be completed once the entire inference batch
size b has been processed.

3 Silicon Photonic Coherent Linear Neuron
Architecture

Figure 2(a) depicts the SiPho processor that was fabricated for
direct on-chip and high-speed mapping of both the input and the
weight elements of an NN, following the COLN architecture43

that can implement a dot-product operation. The SiPho chip
comprises a coherent neuromorphic architecture that imple-
ments a two-input COLN capable of executing multiple-accu-
mulate (MAC) operations, i.e., the weighted summation of its
input data. It exploits the interference capabilities of Mach–
Zehnder interferometers (MZIs), complemented by a bias
branch that safeguards the retention of the sign of the weighted
summation (see Supplementary Material). A visualization of
the SiPho COLN and the experimental setup established for
its evaluation are depicted in Fig. 2(b). Specifically, the SiPho
processor comprises five compact and high-bandwidth SiGe
EAMs (orange boxes), with two EAMs used in cascade at
each MZI branch for on-chip input data and weight imprinting,
respectively, and one EAM employed in the bias branch. The
selection of the SiGe EAMs allows for a high compute rate,
while retaining the energy consumption and the footprint at
low values.44,45 The normalized electrooptic jS21j response of
an EAM biased at −1.5 V is presented in Fig. 2(c), revealing
a 1-dB bandwidth higher than 50 GHz. Finally, 3 TO phase
shifters (PSs) [blue cylinders in Fig. 2(b)], one at the bias branch
and one at each MZI arm, are employed for the application of

Fig. 2 (a) Microscope top-view photo of the integrated coherent optical linear neuron. The
elementary computational cell is encapsulated within a red rectangle. Inset, 2-input neuron real-
ized in the SiPho chip. (b) Experimental setup and visualization of the SiPho chip. (c) Normalized
|S21| of the SiGe EAMs deployed in the SiPho processor. (d) Optical loss with respect to the
electrical power injected to the PSa.
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the sign of the weighted inputs. Figure 2(d) illustrates the optical
loss of PSa with respect to the applied driving power, showcas-
ing that ∼4 mW is required for π phase shift. Similar behavior
was observed in PSb and PSbias.

4 Experimental Classification of Benign
and Malicious Reconnaissance Attacks
Using Photonic TMM at 50 GHz

The NN trained for the RAs classification follows the topology
shown in Fig. 3(a). The six features of the port scanned traffic
comprise the six inputs of the NN, followed by a fully connected
hidden layer (Layer #1) of eight neurons and a two-neuron out-
put layer. The Sigmoid and the SoftMax activation functions
were applied to the hidden and output layers, respectively.
During the experimental validation of the NN operation, both
input and the weight values were updated at the rate of 16
and 50 GHz. Tiled MM was utilized for applying the 64 weight
values of the 6:8:2 NN onto the 2:1 SiPho processor, adopting
an intralayer and intraneuron TDM approach for calculating
the MVM product within Layer #1 before repeating the same
process for calculating the MVM products in Layer #2. The
accuracy performance of the proposed SiPho neuromorphic
prototype was evaluated via the classification of real traffic
generated for RA identification (see Supplementary Material).

Figures 3(b)–3(g) illustrate the time multiplexed sample
traces obtained at the output of each phase during the experi-
mental inference, with the black dashed lines representing the
software-obtained traces, and the orange and blue solid lines
corresponding to the experimental traces at 16 and 50 Gbaud,
respectively. In particular, Figs. 3(b)–3(d) depict the time multi-
plexed sample traces that were obtained in the three phases of
the first layer, respectively, whereas Figs. 3(e)–3(g) illustrate

the time-multiplexed sample traces obtained at each phase of
the output layer. Figure 3(h) presents the normalized mean
squared errors (MSEs) of the experimentally captured signals
per inference phase and per layer. The MSEs of the 16 and
50 Gbaud summations at the last phase of Layer #1 equal
∼3% and ∼4.5%, respectively, while the respective MSE values
after the summations of the first phase of Layer#2 are reduced to
<1% and ∼2%, respectively. The MSE is always higher at
50 GHz compared with the 16 GHz operational mode and
increases as the process moves from the first to the last phase
within the same layer, being the result of the noise accumulation
that is associated with the reuse of the photonic processor and
the higher noise bandwidth. Yet, the interlayer transition reduces
the deviation between the experimental and the reference wave-
form, decreasing the amount of noise upon entering Layer #2
compared with the noise that was accumulated through all
Layer #1 phases. This is the result of the Sigmoid activation
function employed at Layer #1 output, which takes advantage
of its high nonlinearity at its boundaries to compress the edge
values of the samples.

The inference classification performance of our SiPho
prototype when performing with 500 samples of the generated
traffic was quantified by calculating the κ-score, which com-
prises a statistical metric for the evaluation of the inference
accuracy when imbalanced data sets are classified (see
Supplementary Material), with their confusion matrices de-
picted in Figs. 4(a)–4(c). The software acquired κ-score was
calculated to be equal to 0.70, and the respective values of the
experimental classification at 16 and 50 Gbaud were measured
equal to 0.688 and 0.636, as depicted in Fig. 4(d). Finally, the
signal-to-noise ratio (SNR) values of the linear summations
emerging from the photonic NN (PNN) were measured equal
to 14.1 and 11.2 dB, respectively.

Fig. 3 (a) 6:8:2 NN topology for the classification of benign and malicious traffic. (b)–(g) Sample
traces obtained at the output of each inference phase, where black dashed lines represent the
software-obtained traces and the orange and blue lines correspond to the experimentally obtained
traces at 16 and 50 Gbaud, respectively. (h) MSE representation of the 16 and 50 Gbaud exper-
imentally obtained signals per inference phase.
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5 Discussion
The successful proof-of-principle experimental validation of the
optical TMM at 16 and 50 GHz and the classification of the RA
traffic requires a total number of six TDM phases, which is
the result of the 2:1 PNN that, inevitably, necessitates the use of
2:1 matrix tiles. The number of TDM phases required and the
associated time overhead can be reduced by scaling the PNN
chip into a higher-dimension layout that can host a higher
amount of on-chip input and weight modulation elements.
Figure 5(a) illustrates how the 2:1 COLN can scale to an N∶1
neuron by following the layout that has been already mathemati-
cally validated and simulated in Ref. 43 and experimentally
validated in Refs. 26 and 46. This is based on the introduction
of an 1∶N splitter followed by a stack of parallel waveguides,
where every waveguide incorporates a high-speed amplitude
modulator for the input signal, followed by a high-speed PS
for sign update and a high-speed amplitude modulator for
weight update. All these parallel waveguides recombine via
an N∶1 combiner, forming in this way a multibranch interfer-
ometer. Extending this architecture into a 2D N ×M matrix that
can support N ×M matrix tiles and further reduce the MVM
latency can be realized by adopting an N ×M coherent linear
photonic Xbar architecture that follows the principles reported
in Refs. 47 and 48 and uses EAMs as its input and weight modu-
lation circuitry. The N ×M Xbar layout is depicted in Fig. 5(b),

with the green rectangle illustrating that the 2:1 COLN utilized
in our PNN chip [Fig. 2(a)] comprises a subblock within the
N ×M design. The N ×M Xbar architecture can host M neu-
rons with N axons per neuron simultaneously, allowing for the
use of N ×M matrix tiles within the TMM process. The creden-
tials of this architecture to support high-dimension matrix tiles
within practical total loss values can be verified through a quan-
titative theoretical insertion loss (IL) analysis using experimen-
tally measured specifications, assuming a symmetric N × N
Xbar that employs SiGe EAMs both for the input and the weight
values (see Supplementary Material). As shown in Fig. 6, the
total IL of the Xbar architecture increases with increasing matrix
dimensions but retains a reasonable value of less than 30 dB,
even for a 32 × 32 layout, which supports a total amount of
1024 MAC operations. This can scale to higher total MAC capa-
bilities by combining wavelength division multiplexing (WDM)
with the coherent Xbar scheme, following the design reported
in Refs. 47 and 49, and can support k × N × N tensor tiles,
with k representing the number of wavelengths employed.
The extension of the 2:1 COLN into an N∶M coherent Xbar
design retains all its additional benefits with respect to flexi-
bility, robustness, and energy and footprint efficiency50,51 (see
also Supplementary Material), as it allows for one-to-one and
high-fidelity single-step mapping of the NN parameters onto
the PNN hardware48 and the deployment of high-speed nodes’
technology.

Fig. 4 (a) and (b) Experimentally derived confusion matrices of the RA binary classifier at 16 and
50 Gbaud. (c) Equivalent confusion matrix calculated via the software. (d) Experimentally obtained
Cohen’s κ-score and SNR of the output layer at 16 and 50 Gbaud.

Fig. 5 (a) N-input COLN. (b) The photonic N ×M Xbar layout realizing the weight matrix (blue
rectangle) and utilized as an MVM engine onto an N-element input vector (red rectangle).
Green rectangle shows the 2:1 MVM architectural part fabricated as a silicon chip with SiGe
EAMs for both the input and the weighting stage.
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6 Conclusion
Recent advances in SiPhos have enabled the exploitation of light
for computing by accelerating the execution of deep-learning
algorithms. In this work, we demonstrate an SiPho processor
that is capable of performing linear algebra operations of
any-dimensioned NN layer towards classifying, at record-high
speeds, DDOS attacks within DC server packets. Specifically,
by employing the TMM method, we were able to accelerate
the MAC operations that take place into the AI processor up to
the rate of 50 GHz, detecting successfully benign and malicious
attacks with a κ-score of 0.636. Finally, towards minimizing
the computing steps and maximizing the classification speeds,
we provide a dimension scaling analysis of the demonstrated
prototype into a space division multiplexed Xbar architecture
capable of supporting layer-scale linear algebra operations.
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